Детали трубопроводов бесшовные приварные из углеродистой и низколегированной стали

ПЕРЕХОДЫ

Конструкция

Издание официальное

Предисловие

1 РАЗРАБОТАН ОАО «Корпорация МОНТАЖСПЕЦСТРОЙ»

ВНЕСЕН Государственным комитетом Российской Федерации по стандартизации и метрологии

2 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол № 20 от 1 ноября 2001 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Азербайджанская Республика	Азгосстандарт
Республика Армения	Армгосстандарт
Республика Беларусь	Госстандарт Республики Беларусь
Грузия	Грузстандарт
Республика Казахстан	Госстандарт Республики Казахстан
Кыргызская Республика	Кыргызстандарт
Республика Молдова	Молдовастандарт
Российская Федерация	Госстандарт России
Республика Таджикистан	Таджикстандарт
Туркменистан	Главгосслужба «Туркменстандартлары»
Республика Узбекистан	Узгосстандарт
Украина	Госстандарт Украины

Изменение № 1 принято Межгосударственным советом по стандартизации, метрологии и сертификации (протокол № 29 от 24 июня 2006 г.)

За принятие изменения проголосовали национальные органы по стандартизации следующих государств: АМ, КZ, KG, MD, RU, TJ, UZ, UA [коды альфа-2 по МК (ИСО 3166) 004]

- 3 Стандарт соответствует ИСО 3419—81 «Фитинги из легированной и нелегированной стали приварные встык» в части конструкции переходов
- 4 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 27 мая 2002 г. № 205-ст межгосударственный стандарт ГОСТ 17378—2001 (ИСО 3419—81) введен в действие в качестве государственного стандарта Российской Федерации с 1 января 2003 г.
 - 5 B3AMEH FOCT 17378-83
 - 6 ИЗДАНИЕ (ноябрь 2009 г.) с Изменением № 1, принятым в апреле 2007 г. (ИУС 7-2007)

© ИПК Издательство стандартов, 2002 © СТАНДАРТИНФОРМ, 2010

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Федерального агентства по техническому регулированию и метрологии

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Детали трубопроводов бесшовные приварные из углеродистой и инэколегированной стали

ПЕРЕХОДЫ

Конструкция

Carbon and Iow-alloy steel butt-welding fittings. Reducers. Design

Дата введения 2003-01-01

1 Область применения

Настоящий стандарт распространяется на бесшовные приварные концентрические и эксцентрические переходы из углеродистой и низколегированной стали.

Область применения переходов — в соответствии с разделом 1 ГОСТ 17380.

Требования пунктов 4.1 — 4.3 и раздела 5 являются обязательными, остальные требования — рекомендуемыми.

2 Нормативные ссылки

В настоящем стандарте использована ссылка на ГОСТ 17380—2001 (ИСО 3419—81) Детали трубопроводов бесшовные приварные из углеродистой и низколегированной стали. Общие технические условия

3 Определения, обозначения и сокращения

Термины, их определения, обозначения и сокращения — по ГОСТ 17380.

4 Конструкция и размеры

4.1 Конструкция и размеры переходов должны соответствовать указанным на рисунке 1 и в таблинах 1 и 2.

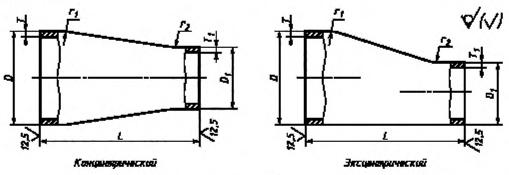


Рисунок 1

Таблица 1 — Переходы исполнения 1

DN	D	T	D_{i}	T_i	L	Macca, 1
20	26,9	2,0 3,2 4,0	21,3	2,0 3,2 4,0	38	0,05 0,07 0,09
25	33,7	2,3 3,2 4,5	21,0	2,0 3,2 4,0		0,09 0,12 0,16
23	33,7	2,3 3,2 4,5	26.9	2,0 3,2 4,0		0,09 0,12 0,16
		2,6 3,6 5,0	21,3	2,0 3,2 4,0	51	0,13 0,17 0,23
32	42,4	2,6 3,6 5,0	26.9	2,0 3,2 4,0		0,13 0,17 0,23
		2,6 3,6 5,0	33,7	2,3 3,2 4,5		0,13 0,17 0,23
		2,6 3,6 5,0	26.9	2,0 3,2 4,0		0,19 0,25 0,34
40	48,3	2,6 3,6 5,0	33,7	2,3 3,2 4,5	64	0,19 0,25 0,34
		2,6 3,6 5,0	42,4	2,6 3,6 5,0		0,19 0,25 0,34
		2,9 4,0 5,6	33,7	2,3 3,2 4,5		0,31 0,42 0,58
50	60,3	2,9 4,0 5,6	42,4	2,6 3,6 5,0	76	0,31 0,42 0,58
4 -		2,9 4,0 5,6	48,3	2,6 3,6 5,0		0,31 0,42 0,58
45	76 1	2,9 5.0 7,1	42,4	2,6 3,6 5,0	90	0,47 0,78 1,10
65	76,1	2,9 5.0 7,1	48.3	2,6 3,6 5,0	89	0,47 0,78 1,10

Продолжение таблицы 1

DN	D	T	$D_{_{1}}$	T_1	L	Масса, к
65	76,1	2,9 5,0 7,1	60,3	2,9 4,0 5,6		0,47 0,78 1,10
7	11 11	3,2 5,6 8,0	48,3	2,6 3,6 5,0	89	0,60 1,00 1,40
80	88,9	3,2 5,6 8,0	60,3	2,9 4,0 5,6	37	0,60 1,00 1,40
		3,2 5,6 8,0	76,1	2,9 5,0 7,1		0,60 1,00 1,40
		3,6 6,3 8,8	60,3	2,9 4,0 5,6		1,00 1,70 2,30
100	114,3	3,6 6,3 8,8	6,3 76,1 5,0	102	1,00 1,70 2,30	
	3,6 6,3 8,8	88,9	3,2 5,6 8,0		1,00 1,70 2,30	
		4,0 6,3 10,0	76,1	2,9 5,0 7,1		1,70 2,60 4,10
125	139,7	4,0 6,3 10,0	88,9	3,2 5,6 8,0	127	1,70 2,60 4,10
		4,0 6,3 10,0	114,3	3,6 6,3 8,8		1,70 2,60 4,10
	4,5 7,1 11,0	88,9	3,2 5,6 8,8		2,50 3,90 6,00	
150	168,3	4,5 7,1 11,0	114,3	3,6 6,3 8,8	140	2,50 3,90 6,00
		4,5 7,1 11,0	139,7	4,0 6,3 10,0		2,50 3,90 6,00
200	219,1	6,3 8,0 12,5	114,3	3,6 6,3 8,8	152	5,10 6,30 9,70

Продолжение таблицы 1

DN	D	T	D_{i}	T_{i}	L	Масса, к
200	219,1	6,3 8,0 12,5	139,7	4,0 6,3 10,0	152	5,10 6,30 9,70
200	219,1	6,3 8,0 12,5	168,3	4,5 7,1 11,0	132	5,10 6,30 9,70
		6,3 10,0	139,7	4,0 6,3		7,40 12,00
250	273,0	6,3 10,0	168,3	4,5 7,1	178	7,40 12,00
		6,3 10,0	219,1	6,3 8,0		7,40 12,00
		7,1 10,0	168,3	4,5 7,1	203	11,00 16,00
300	323,9	7,1 10,0	219,1	6,3 8,0		11,00 16,00
	7,1 10,0	273,0	6,3 10,0		11,00 16,00	
		8,0 11,0	219,1	6,3 8,0	330	23,00 31,00
350	355,6	8,0 11,0	273,0	6,3 10,0		23,00 31,00
		8,0 11,0	323,9	7,1 10,0		23,00 31,00
		8,8 12,5	273,0	6,3 10,0		31,00 43,00
400	406,4	8,8 12,5	323,9	7,1 10,0	356	31,00 43,00
		8,8 12,5	355,6	8,0 11,0		31,00 43,00
			323,9	7,1		1
450	457,0	10,0	355,6	8,0	381	42,00
			406,4	8,8		
			355,6	8,0		1
500	508,0	11,0	406,4	8,8	508	65,00
			457,0	10,0		

Окончание таблицы 1

Размеры в миллиметрах

DN	D	T	D_{i}	$T_{\rm f}$	L	Macea, s	
			406,4	8,8			
600	610,0	12,5	457,0	10,0	508	94,0	
			508,0	11,0			
			457,0	10,0			
700	711,0	711,0		508,0	11,0	1	
		1	610,0	12,5			
	813,0	813,0		508,0	11,0		
800				610,0	12,5	1	
			711,0	-			
		-	610,0	12,5	610	_	
900	914,0		711,0				
	1 1		813,0	1 -			
			711,0				
1000	1016,0		813,0	-			
			914,0				

Таблица 2 — Переходы исполнения 2

DN	D	T	$D_{_{1}}$	T_{i}	L.	Масса, к
	2,0 3,0 4,0	32	2,0 3,0 4,0		0,1 0,2 0,2	
32	38	2,0 3,0 4,0	25	1,6 3,0 3,0		0,1 0,2 0,2
		2,5 4,0 5,0	2	1,6 3,0 3,0	30	0,1 0,2 0,3
40	45	2,5 4,0 5,0	32	2,0 4,0 5,0		0,1 0,2 0,3
		2,5 4,0 5,0	38	2,0 4,0 5,0		0,1 0,2 0,3
50	57	3,0 4,0 5,0 6,0	25	1,6 1,6 3,0 3,0	45	0,2 0,3 0,3 0,4

Продолжение таблицы 2

DN	D	T	D_1	T_{i}	L	Масса, к
		3,0 4,0 5,0 6,0	32	2,0 2,0 3,0 4,0		0,2 0,3 0,3 0,4
-	67	3,0 4,0 5,0 6,0	38	2,0 4,0 4,0 4,0	45	0,2 0,3 0,3 0,4
50	57	3,0 3,5 4,0 5,0 6,0	45	2,5 2,5 3,0 4,0 5,0		0,2 0,2 0,3 0,3 0,4
		3,0 4,0 5,0 6,0		2,5 2,5 4,0 5,0	60	0,2 0,3 0,3 0,4
		3,0 3,5 5,0 6,0 7.0	38	2,0 2,5 3,0 3,0 4,0	55	0,3 0,4 0,6 0,6 0,7
65	76	3,0 3,5 5.0 6,0 7.0	45	2,5 2,5 4,0 4,0 5,0	70	0,4 0,5 0,6 0,7 0,8
		3,0 3,5 5,0 6,0 7,0	57	3,0 3,0 4,0 5,0 6,0	70	0.3 0,4 0,6 0,7 0,8
		3,5 6,0 8,0	45	2,5 4,0 5,0	75	0,6 0,9 1,2
		3,5 6,0 8,0	57	3,0 4,0 5,0	13	0,6 0,9 1,2
80	89	3,5 4,0 6,0 8,0	76	3,0 3,5 5,0 6,0	55	0,5 0,5 0,7 0,9
		3,5 6,0 8,0	70	3,5 5,0 6,0	75	0,6 0,9 1,2

Продолжение таблицы 2

Размеры в миллиметрах

DN	D	T	$D_{_{1}}$	<i>T</i> ₁	L	Macca, s
		4,0		3,0		0,9
		6,0		4,0		1,2
		8,0	57	5,0		1,6
	Α.	9,0		6,0		1,8
		4,0		3,5		0.9
	A response	6,0	76	5,0	17.7	1,2
	108	8.0		6,0		1,6
		9,0		7,0		1,6 1,8
		4.0		3,5	Ī	0,9
		6,0	89	6,0		1,2
		8.0	89	8,0		1,6
100		9,0		8,0	80	1,6 1,8
		4,0		3,0		1,0
		6.0	ca.	4,0	A	1,3
	4	8.0	57	5,0		1,7
		9,0		6,0		1,0 1,3 1,7 1,9
	1236	4,0		3,5		1,0
	114	6,0	4	5,0		1,3
		8.0	76	6,0		1,3 1,7
		9,0		7,0		1,9
		4,0		3,5		1,0
		6.0	00	6,0		1,3
		8.0	89	8,0		1,7
44		9.0		8,0		1,3 1,7 1,9
		4,0		3,0		1,3
		8.0	57	4,0	b	2,5
		10,0		5,0		1,3 2,5 3,1
		5,0		3,5		1,6
		8.0	76	5,0		2,5
	loo G	10,0	2 3 - 2	6,0	100	1,6 2,5 3,1
	1	4,0		3,5	100	1,3
	1	6,0	89	5,0		1,9
		8,0		6,0		1,9 2,5
		5,0		4,0		1,6 2,5 2,5 3,1
125	133	8.0		6.0		2,5
	1.3447	8,0	1	8,0		2,5
		10,0	108	9,0		3.1
		5,0	105	4,0		1,3 1,6
		6,0		5.0		1,6
		8.0	1	7,0		2.0
	(y) — —	10,0		9,0	80	2,5
		5,0		4,5	80	1,3
		6,0	114	5,0		1,6
		8.0		6,0		2,0
		10,0		8.0		2,5
		6,0 8,0 10,0	114	5,0 6,0 8,0		2,0

Продолжение таблицы 2

DN	D	T	D_{i}	T _i	L	Масса, к
125	133	5,0 8,0 8,0 10,0	114	4,0 6,0 8,0 9,0	100	1,6 2,5 2,5 3,1
		4,5 8,0 10,0 12,0	57	3,0 4,0 5,0 6,0	75	1,5 2,6 3,2 3,9
		4,5 8,0 10,0 12,0	76	3,5 5,0 6,0 7,0	/3	1,5 2,6 3,2 3,9
		4,5 8,0 10,0 12,0	89	3,5 6,0 8,0 8,0	130	2,3 3,9 4,8 5,9
	159	4,5 8,0 10,0 12,0	108	4,0 6,0 8,0 9,0		2,3 3,9 4,8 5,9
		4,5 8,0 10,0 12,0		4,0 6,0 8,0 9,0		2,3 3,9 4,8 5,9
150		5,0 6,0 8,0 10,0	114	4,0 5,0 6,0 8,0	105	2,0 2,5 3,1 3,8
		5,0 6,0 8,0 10,0		4,5 5,0 7,0 9,0		2,0 2,5 3,1 3,8
		4,5 8,0 10,0 12,0	133	4,0 8,0 10,0 10,0	130	2,3 3,9 4,8 5,9
168	160	4,5 8,0 10,0 12,0	57	3,0 4,0 5,0 6,0	75	1,6 2,7 3,3 4,0
	198	4,5 8,0 10,0 12,0	76	3,5 5,0 6,0 7,0	/3	1,6 2,7 3,3 4,0

Продолжение таблицы 2

Размеры в миллиметрах

DN	D	T	D_1	T_1	L	Масса, к
		4,5 8,0 10,0 12,0	89	3,5 6,0 8,0 8,0		2,6 4,1 5,1 6,2
		4,5 8,0 10,0 12,0	108	4,0 6,0 8,0 9,0		2,6 4,1 5,1 6,2
150	168	4,5 8,0 10,0 12,0	114	4,0 6,0 8,0 9,0	130	2,6 4,1 5,1 6,2
		4,5 8,0 10,0 12,0	133	4,0 8,0 10,0 10,0		2,6 4,1 5,1 6,2
		6,0 10,0 12,0 14,0 16,0	57	3,0 4,0 4,0 5,0 6,0		2,9 4,6 5,5 6,4 7,3
		6,0 10,0 12,0 14,0 16,0	76	3,5 5,0 5,0 6,0 7,0		2,9 4,6 5,5 6,4 7,3
		6,0 10,0 12,0 14,0 16,0	89	3,5 5,0 5,0 6,0 8,0	95	2,9 4,6 5,5 6,4 7,3
200	219	6,0 10,0 12,0 14,0 16,0	108	4,0 6,0 8,0 8,0 9,0		2,9 4,6 5,5 6,4 7,3
		6,0 10,0 12,0 14,0 16,0	114	4,0 6,0 8,0 8,0 9,0	P	2,9 4,6 5,5 6,4 7,3
		6,0 10,0 12,0 14,0 16,0	133	4,0 8,0 8,0 10,0 10,0	140	4,4 7,2 8,8 10,0 12,0

Продолжение таблицы 2

DN	D	T	$D_{_1}$	T_1	L	Масса, кг
200	210	6,0 10,0 12,0 14,0 16,0	159	4,5 8,0 10,0 12,0 12,0		4,4 7,2 8,8 10,0 12,0
200	219	6,0 10,0 12,0 14,0 16,0	168	4,5 8,0 10,0 12,0 12,0		4,4 7,2 8,8 10,0 12,0
		7,0 10,0 12,0 14,0 16,0 18,0 7,0 6,0 8,0 8,0 9,0 9,0 9,0	4,0 6,0 8,0 8,0 9,0 9,0	140	6,0 8,5 10,0 12,0 13,0 15,0	
		7,0 10.0 12,0 14,0 16.0 18,0	114	4,0 6,0 8,0 8,0 9,0 9,0		6,0 8,5 10,0 12,0 13,0 15,0
		7,0 10,0 12,6 14,0 16,0 18,0	133	4,0 6,0 8,0 8,0 10,0 10,0		6,0 8,5 10,0 12,0 13,0 15,0
250	273	7,0 10,0 12.0 14,0 16,0 18,0	159	4,5 8,0 10,0 10,0 12,0 12,0		8,3 12,0 14,0 16,0 18,0 20,0
		7,0 10,0 12,0 14,0 16,0 18,0	168	4,5 8,0 10,0 10,0 12,0 12,0	180	8,3 12,0 14,0 16,0 18,0 20,0
		7,0 10,0 12,0 14,0 16,0 18,0	219	6,0 8,0 10,0 12,0 14,0 16,0		8,3 12,0 14,0 16,0 18,0 20,0
300	325	8,0 10,0 12,0 14,0 16,0 18,0 22,0	108	4,0 4,0 6,0 6,0 8,0 8,0 9,0	140	9,0 11,0 16,0 18,0 20,0 23,0 28,0

Продолжение таблицы 2

Размеры в миллиметрах

DN	D	T	$D_{_1}$	T_1	L	Масса, к
	8,0 10,0 12,0 14,0 16,0 18,0 22,0	114	4,0 4,0 6,0 6,0 8,0 8,0 9,0		9.0 11.0 16,0 18,0 20,0 23,0 28,0	
		8,0 10,0 12,0 14,0 16,0 18,0 22,0	133	5,0 6,0 8,0 8,0 8,0 10,0 10,0	140	11,0 13,0 16,0 18,0 20,0 23,0 28,0
	325	8,0 10,0 12,0 14,0 16,0 18,0 22,0	159	4,5 6,0 8,0 8,0 10,0 10,0 12,0		11.0 14.0 16.0 18.0 20.0 23.0 28.0
300	323	8,0 10,0 12,0 14,0 16,0 18,0 22,0	168	4,0 6,0 8,0 8,0 10,0 10,0 12,0		11,0 14,0 16,0 18,0 20,0 23,0 28,0
		8,0 10,0 12,0 14,0 16.0 18.0 22,0	219	7,0 8,0 10,0 10,0 12,0 14,0 16,0		11,0 14,0 17,0 20,0 22,0 25,0 31,0
		8,0 10,0 12,0 14,0 16,0 18,0 22,0	273	7,0 10,0 12,0 12,0 14,0 16.0 18.0		11,0 14,0 17,0 20,0 22,0 25,0 31,0
250	12,0 16,0 20,0 24,0 26,0	16,0 20,0	159	6,0 8,0 10,0 12,0 12,0		22,0 29,0 35,0 42,0 45,0
350	377	12,0 16,0 20,0 24,0 26,0	168	6,0 8,0 10,0 12,0 12,0	220	22,0 29,0 35,0 42,0 45,0

Продолжение таблицы 2

DN	D	T	$D_{_1}$	T_1	L	Масса, к
350	377	12,0 16,0 20,0 24,0 26,0	219	8,0 10,0 12,0 14,0 16,0	220	22,0 29,0 35,0 42,0 45,0
		10,0 12,0 14,0 16,0 20,0 24,0 26,0	273	7,0 10,0 12,0 12,0 16,0 18,0		20,0 24,0 28,0 31,0 38,0 45,0 49,0
		10,0 12,0 14,0 16,0 20,0 24,0 26,0	325	8,0 10,0 12,0 16,0 18,0 22,0 22,0		20,0 24,0 28,0 31,0 38,0 45,0 49,0
400	12,0 16,0 20,0 22,0 26,0 28,0 12,0 16,0 20,0 22,0 26,0 26	16,0 20,0 22,0 26,0	159	8,0 10,0 10,0 10,0 12,0 12,0		37,0 53,0 65,0 71,0 83,0 89,0
		16,0 20,0 22,0 26,0	168	8,0 10,0 10,0 10,0 12,0 12,0		37.0 53.0 65,0 71.0 83,0 89.0
		16,0 20,0 22,0 26,0	219	8,0 10,0 12,0 12,0 14,0 16,0		32,0 45,0 56,0 61,0 72,0 76,0
		16,0 20,0 22,0 26,0	273	10,0 12,0 14,0 14,0 18,0 18,0		27.0 36.0 44.0 48.0 56,0 59,0
		12.0 14,0 16,0 20,0 22,0	325	8,0 10,0 12,0 12,0 16,0 18,0 20,0 22,0		23,0 27,0 31,0 36,0 44,0 48,0 56,0 59,0

Размеры в миллиметрах

DN	D	T	D_{i}	T_1	L	Масса, к
400		10,0		10,0	220	23,0
		12,0		12,0		27,0
		14,0		14,0		31,0
	14.3	16,0		16,0		36,0
	426	20,0	377	20,0		44,0
		22,0		20,0		48,0
		26,0		24,0		56,0
		28,0		26,0		59,0
		12,0		10,0	<u> </u>	46,0
		14.0		12,0		54,0
	530	16.0		12,0	V	61,0
		20,0	150.2	16,0		75,0
500		22,0	377	20,0	Y	81,0
		26,0		22,0	200	94,0
		12,0		10,0	300	46,0
		14,0		12,0	V	54,0
		16,0	lacted at the	16.0		61,0
		20,0	426	16,0	h 6	75,0
		22,0	177	20,0		81,0
		26,0		22,0		94,0

Примечание — Масса приведена для справок.

Примеры условных обозначений:

- концентрического перехода исполнения 1, D = 76,1 мм, T = 2,9 мм, $D_1 = 48,3$ мм, $T_1 = 2,6$ мм из стали марки Р9:

- эксцентрического перехода исполнения 2, D=76 мм, T=3.0 мм, $D_1=45$ мм, $T_1=2.5$ мм из стали марки 20:

- то же, из стали марки 09Г2С для трубопроводов, подконтрольных органам надзора:

Переход П Э-76 × 3-45 × 2,5-09Г2С ГОСТ 17378-2001

(Измененная редакция, Изм. № 1).

- 4.2 Толщина стенки переходов в неторцевых сечениях должна быть не менее T_1 при наружном диаметре сечения не более $1,1D_1$, а в остальных сечениях не менее T.
- 4.3 Радиусы r_1 и r_2 переходов исполнения 1 должны соответствовать указанным в таблице 3, а исполнения 2 устанавливаются изготовителем в конструкторской документации с учетом применяемой технологии изготовления и обеспечения требуемых показателей прочности и надежности.

Т а б л и ц а 3 — Радиусы сопряжения поверхностей переходов

Тип перехода исполнения 1	$r_{\rm l}$	r ₂	
	не менее		
Концентрический	0,4D	0,4D	
Эксцентрический	0,3D	0.3D	

(Измененная редакция, Изм. № 1).

4.4 По согласованию между изготовителем и потребителем (заказчиком) допускается изготовление переходов других размеров.

5 Технические условия

Технические условия — по ГОСТ 17380.

УДК 621.643.4:006.354 МКС 23.040.40 Г18 ОКП 14 6800

Ключевые слова: трубопроводы, детали трубопроводов, трубопроводные переходы, конструкция, размеры

Изменение № 2 ГОСТ 17378—2001 (ИСО 3419—81) Детали трубопроводов бесшовные приварные из углеродистой и низколегированной стали. Переходы. Конструкция

Принято Межгосударственным советом по стандартизации, метрологии и сертификации (протокол № 138-П от 19.03.2021)

Зарегистрировано Бюро по стандартам МГС № 15529

За принятие изменения проголосовали национальные органы по стандартизации следующих государств: АМ, ВҮ, КG, RU, TJ, UA, UZ [коды альфа-2 по МК (ИСО 3166) 004]

Дату введения в действие настоящего изменения устанавливают указанные национальные органы по стандартизации*

Пункт 4.1. Примеры условных обозначений дополнить перечислениями:

«- концентрического перехода исполнения 2, D = 159 мм, T = 8 мм, D_{\uparrow} = 108 мм, T_{\downarrow} = 6 мм из стали марки 09Г2С класса прочности К52, с минимальной температурой стенки перехода при эксплуатации минус 26 °C для трубопроводов, подконтрольных органам надзора:

- концентрического перехода исполнения 2, D = 159 мм, T = 8 мм, T_s = 10 мм, D₁=108 мм, T₁ = 8 мм из стали марки 09Г2С класса прочности К52, с минимальной температурой стенки перехода при эксплуатации минус 26 °C для трубопроводов, подконтрольных органам надзора:

- концентрического перехода исполнения 2, D = 273 мм, T = 10 мм, D_1 = 168 мм, T_1 = 8 мм класса прочности K60, с минимальной температурой стенки перехода при эксплуатации минус 30 °C для трубопроводов, подконтрольных органам надзора:

Переход К П-273 × 10-168 × 8-Кб0-30 °С ГОСТ 17378-2001».

(MYC № 8 2021 r.)

Дата введения в действие на территории Российской Федерации — 2021—06—01.

Изменение № 1 ГОСТ 17378—2001 (ИСО 3419—81) Детали трубопроводов бесшовные приварные из углеродистой и низколегированной стали. Переходы. Конструкция

Принято Межгосударственным советом по стандартизации, метрологии и сертификации (протокол № 29 от 24.06.2006)

Зарегистрировано Бюро по стандартам МГС № 5422

За принятие изменения проголосовали национальные органы по стандартизации следующих государств: AM, KZ, KG, MD, RU, TJ, UZ, UA [коды альфа-2 по МК (ИСО 3166) 004]

Дату введения в действие настоящего изменения устанавливают указанные национальные органы по стандартизации*

Раздел 2. Заменить ссылку: ГОСТ 17380—2001 на ГОСТ 17380—2001 (ИСО 3419—81).

DN	D	T	$D_{\scriptscriptstyle \parallel}$	$T_{\rm t}$	L	Масса, кг
50	57	3,0 3,5 4,0 5,0 6,0	45	2,5 2,5 3,0 4,0 5,0	45	0,2 0,2 0,3 0,3 0,4
80	89	3,5 4,0 6,0 8,0	76	3,0 3,5 5,0 6,0	55	0,5 0,5 0,7 0,9
125	133	5,0 6,0 8,0 10,0	108	4,0 5,0 7,0 9,0	- 80	1,3 1,6 2,0 2,5
123		5,0 6,0 8,0 10,0	114	4,5 5,0 6,0 8,0		1,3 1,6 2,0 2,5

Дата введения в действие на территории Российской Федерации — 2008—01—01.

Окончание таблицы

DN	D	T	$D_{\rm i}$	$T_{\mathbf{i}}$	L	Масса, кг
150	159 —	5,0 6,0 8,0 10,0	114	4,0 5,0 6,0 8,0	105	2,0 2,5 3.1 3,8
		5,0 6,0 8,0 10,0	133	4,5 5,0 7,0 9.0		2,0 2,5 3,1 3,8

Пункт 4.3. Первый абзац изложить в новой редакции:

«Радиусы r_1 и r_2 переходов исполнения 1 должны соответствовать указанным в таблице 3, а исполнения 2 устанавливаются изготовителем в конструкторской документации с учетом применяемой технологии изготовления и обеспечения требуемых показателей прочности и надежности»:

таблица 3. Наименование после слова «переходов» дополнить словами: «исполнения 1».

(ИУС № 7 2007 г.)

Изменение № 2 ГОСТ 17378—2001 (ИСО 3419—81) Детали трубопроводов бесшовные приварные из углеродистой и низколегированной стали. Переходы. Конструкция

Принято Межгосударственным советом по стандартизации, метрологии и сертификации (протокол № 138-П от 19.03.2021)

Зарегистрировано Бюро по стандартам МГС № 15529

За принятие изменения проголосовали национальные органы по стандартизации следующих государств: АМ, ВҮ, КG, RU, TJ, UA, UZ [коды альфа-2 по МК (ИСО 3166) 004]

Дату введения в действие настоящего изменения устанавливают указанные национальные органы по стандартизации*

Пункт 4.1. Примеры условных обозначений дополнить перечислениями:

«- концентрического перехода исполнения 2, D = 159 мм, T = 8 мм, D_{\uparrow} = 108 мм, T_{\downarrow} = 6 мм из стали марки 09Г2С класса прочности К52, с минимальной температурой стенки перехода при эксплуатации минус 26 °C для трубопроводов, подконтрольных органам надзора:

- концентрического перехода исполнения 2, D = 159 мм, T = 8 мм, T_s = 10 мм, D₁=108 мм, T₁ = 8 мм из стали марки 09Г2С класса прочности К52, с минимальной температурой стенки перехода при эксплуатации минус 26 °C для трубопроводов, подконтрольных органам надзора:

- концентрического перехода исполнения 2, D = 273 мм, T = 10 мм, D_1 = 168 мм, T_1 = 8 мм класса прочности K60, с минимальной температурой стенки перехода при эксплуатации минус 30 °C для трубопроводов, подконтрольных органам надзора:

Переход К П-273 × 10-168 × 8-Кб0-30 °С ГОСТ 17378-2001».

(MYC № 8 2021 r.)

Дата введения в действие на территории Российской Федерации — 2021—06—01.